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Abstract—The goal of our work is to develop an open and 
modular course for data science and big data analytics that is 
accessible to non-programmers.  The course is designed to 
cover major concepts that are useful to understand the benefits 
of parallel and distributed programming while not relying on a 
programming background.  These key concepts focus more on 
algorithmic aspects rather than architecture and performance 
issues.  A key aspect of our work is the use of workflows to 
illustrate key concepts and to allow the students to practice.  
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I.  INTRODUCTION 
Data science has emerged as a widely desirable skill in 

many areas. Although courses are now available on a variety 
of aspects of data science and big data analytics, there is a 
lack of broad and accessible materials that are accessible to 
non-programmers. As a result, acquiring practical data 
science skills is out of reach for many students and 
professionals, posing severe limitations to our ability as a 
society to take advantage of our vast digital data resources.  
Parallel computing is an area that they would benefit from 
learning.  However, parallel computing is traditionally taught 
as part of the computer science curriculum in ways that 
require strong programming skills [Prasad et al 2012].   

In this paper, we propose a lesson plan to teach parallel 
computing concepts to non-programmers.  The lesson plan is 
part of a course for teaching data science to non-CS students. 

II. DATA SCIENCE FOR NON-PROGRAMMERS 
We are developing educational materials for data science 

to provide broad and practical training in data analytics non-
CS students.  This includes students majoring in science and 
engineering who want to acquire skills to analyze data, such 
as biology, chemistry, and geosciences.  This also includes 
students in the humanities that would like to pursue data-
driven research, such as journalism students interested in 
social media analysis.  

Our focus is on students that will not take programming 
classes.  Our goal is that they learn basic concepts of data 
science, so they can understand how to pursue data-driven 
research projects in their area and be in a better position to 
collaborate with computer scientists in such projects.  

Existing courses on data science typically require 
programming skills.  As an example, Coursera’s 
“Introduction to Data Science”1 requires two college-level 
courses in programming.  Even when targeted to non-
programmers, data science curricula focus on teaching 
programming.  For example, Columbia University’s 
Journalism School offers a set of courses to introduce 
students to data practices2  that starts out teaching basic 
programming skills.    

Although it is always beneficial to learn programming, 
not every student is inclined to invest the time and effort to 
do so.  A course that enables them to learn basic concepts of 
data science will be more approachable and still useful. In 
the spirit of computational thinking [Wing 2006], our goal is 
to design a curriculum that teaches computing concepts 
above the level of particular programming languages and 
implementations. 

Another observation about data science curricula is that 
they tend to focus on databases and machine learning, with 
little attention to parallel and distributed computing.  
Although database technologies and machine learning 
algorithms are important, it is also important to include 
concepts of scalability through parallelism and distributed 
computation.  These concepts are particularly important to 
include in the curriculum, as the motivation to learn about 
data science is often the pursuit of big data analytics and that 
requires understanding how to scale up computation. 

Table I presents the major sections and topics of our 
proposed course for data science.  All the topics can be 
introduced without requiring programming skills.   

The course includes a variety of topics in parallel and 
distributed computing, which we describe in more detail in 
the next section.   

The course also has more emphasis on metadata and 
semantics than are usually included in data science courses.  
There is also more emphasis on end-to-end methods for data 
analysis, which include data pre-processing, data post-
processing, and visualization. 

                                                             
1 https://www.coursera.org/course/datasci 
2 http://www.journalism.columbia.edu/page/1058-the-lede-program-an-introduction-
to-data-practices/906 

Proceedings of the Workshop on Education for High-Performance Computing (EduHPC), held in conjunction with 
the IEEE ACM International Conference on High-Performance Computing (SC) 2014, New Orleans, LA, 2014. 



TABLE I.  MAJOR TOPICS IN THE PROPOSED COURSE ON DATA SCIENCE FOR NON-PROGRAMMERS. 

Section Lesson topics 
Data What is data and what is not data; time series data; network data; 

geospatial data; text data; labeled and annotated data; big data 
Data analysis software Software for data analysis; inputs and outputs of programs; program 

parameters; programming languages; programs as black boxes 
Multi-step data analysis Pre-processing and post-processing data; building workflows by 

composing programs; workflows for data analysis; workflow 
inputs and parameters; running a workflow 

Data analysis tasks What is a data analysis task; prediction; classification; clustering; 
pattern detection; anomaly detection 

Data pre-processing Data cleaning; quality control; data integration; feature selection 
Data post-processing Summarization; filtering; visualization 
Analyzing different types of data Analyzing time series data; analyzing networked data; analyzing 

geospatial data; analyzing text; analyzing images; analyzing 
video 

Parallel computing Cost of computation; parallel processing; multi-core computing; 
distributed computing; speedup with parallel computing; 
dependencies across computations; limits of parallel speedup; 
execution failures and recovery; reduction 

Semantic metadata What is metadata; basic metadata vs semantic metadata; metadata 
about data collection; metadata about data processing; metadata 
for search and retrieval; metadata standards; domain metadata 
and ontologies 

Provenance What is provenance; provenance concerning data; provenance 
concerning agents; provenance concerning processes; provenance 
models; provenance standards 

Semantic workflows What is a semantic workflow; validating data analysis methods; 
automatically generating metadata; tracking provenance; 
publishing workflows; finding workflows 

Visualization Time series visualizations; geospatial visualizations; multi-
dimensional spaces 

Data stewardship  Data sharing; data identifiers; licenses for data; data citation and 
attribution 

Data formats and standards Data formats; data standards; data services; ontologies; linked open 
data 

 
 
Learning these concepts must be supplemented with 

practice.  But how will students with no programming skills 
be able to see programs in action?  A major component of 
the course is the use of a semantic workflow system, 
described in Section 4, to enable students to practice 
complex data analysis concepts, particularly parallel and 
distributed computing. 

 

 

III. PARALLEN AND DISTRIBUTED PROGRAMMING FOR 
NON-PROGRAMMERS 

Table II shows in more detail the topics that we propose 
to cover regarding parallel and distributed computing.  It also 
shows the learning outcomes that we target for each of the 
topics. These learning outcomes are in terms of the student 
understanding those topics by being able to determine the 



applicability of relevant concepts to their own data and 
context. 

 
 

TABLE II.  LESSONS IN PARALLEL AND DISTRIBUTED COMPUTING FOR THE PROPOSED COURSE ON DATA SCIENCE FOR NON-PROGRAMMERS. 

 
Lesson Learning outcomes: Concepts that the student will 

understand 
1. Cost of computation Scaling behavior of different algorithms as data grows; 

limitations of sequential computation in the face of large 
datasets 

2. Divide and conquer Breaking down problems into smaller tasks can make problems 
more manageable; smaller tasks can be more amenable to a 
more scalable approach; parallel computing as a special case of 
divide and conquer 

3. Parallel computing Processing data concurrently through multiple processes; 
splitting large datasets into smaller ones to be processed in 
parallel 

4. Multi-core computing Parallel computing in a single computer with multiple 
processors 

5. Distributed computing Parallel computing in multiple networked computers  
a. Cluster computers Homogeneous computers accessible through a single queue 
b. Cloud computing: Azure, EC3 Computing as a service; cost of computing vs cost of data 

uploads/downloads 
c. Grid computing: Globus, Condor Heterogeneous computers accessible through a grid 
d. Virtual machines Specifications of software requirements to be set up in a 

machine 
e. Web services Distributed computing through remove invocation of third-

party services 
6. Speedup with parallel computing Measuring the time savings of parallel processing 
7. Dependencies and message passing Tightly-coupled computations that require communication 

among processors 
8. Limits of speedup: Critical path Time savings can not always be achieved; critical paths in an 

end-to-end data processing application 
a. Amdahl’s law Measuring the time savings when only some portions of an 

application can be parallelized 
9. Embarrassingly parallel 

computations 
Massively parallel computing 

10. When problems are not 
parallelizable 

Not all applications lend themselves to parallel processing 

11. Execution failures Remote computers can fail; managing failures in a large 
distributed application 

12. Reduction through 
MapReduce/Hadoop 

Reduction as a paradigm for parallelization; 
MapReduce/Hadoop approach 

 
We have noticed that the MapReduce/Hadoop paradigm 

is often mentioned in technical discussions on big data and 
data science.  However, only programmers understand and 
appreciate the features of this paradigm.  Similarly, cloud 
computing is a widely known term that very few understand.  
Making such common terms accessible and understood by 
non-programmers is one of our goals. 

 
 
The lessons also convey notions of algorithmic 

complexity and computational cost.  We view parallel 
computing as an ideal mechanism to illustrate these concepts 
and enable non-programmers to learn to think 
computationally [Wing 2006]. 

 



  

 
Figure 1.  The WINGS user interface for composing and validating workflows: (a) a library of components is available to the user including component 
classes organized in a hierarchy, (b) a component or a component class can be selected and dragged and dropped into the canvas, (c) once dropped the 
component can be connected to express dataflow, (d) semantic constraints restrict the use of datasets and the values of parameters in the workflow, (e) the 
student can ask the system to validate a workflow by reasoning about the semantic constraints, (f) the student can explore and run different workflows.  The 
examples here are for text analytics (from [Hauder et al 2011a]; Hauder et al 2011b]. 

IV. SEMANTIC WORKFLOWS 
To enable students to practice and experience complex 

data science concepts, we allow the students to interact with 
a workflow system that has predefined workflows that they 
can run and explore. The workflow system uses semantic 
constraints to ensure that the workflows are used properly. 

We use the WINGS semantic workflow system 
(http://www.wings-workflows.org).  WINGS is an intelligent 
workflow system that can assist users, and therefore students, 
to create valid workflows [Gil et al 2010] and automate the 
elaboration of high-level workflows [Gil et al 2011a; Gil et 
al 2011b]. Users find pre-defined workflows and workflow 
components that they can reuse and extend to create their 
own workflows.  As users select and configure workflows to 
be executed, WINGS ensures that workflows are correctly 
composed by checking that the data is consistent with the 
semantic constraints defined for the workflow and its 
components. Users can track execution progress and view 
results.  

Workflows offer a visual programming language for 
complex multi-step data analytics.  We have reported on 
non-programmers easily using complex data analysis 
workflows [Hauder et al 2011]. 

Workflows have been used in courses to teach 
visualization [Silva et al 2011].  We believe that they can be 
a powerful paradigm to teach other concepts in data science. 

WINGS has been used for physics-based seismic hazard 
analysis [Gil et al 2007b; Maechlin et al 2005], climate 
model comparison, water quality [Gil et al 2011c; Villamizar 
et al 11], biomedical image analysis [Kumar et al 2010; Kurc 
et al 2009], text analytics [Hauder et al 2011a; Gil et al 
2013a], image and video analysis [Sethi et al 2013a; Sethi et 
al 2013b], population genomics [Gil et al 2012; Gil et al 
2013b], and clinical cancer omics [Gil et al 2013b].  These 
workflows can be used to illustrate different topics in the 
course. 

Figure 1 shows a snapshot of the WINGS user interface 
for composing and validating workflows, in this case using 
workflows for text analytics [Hauder et al 2011a; Hauder et 
al 2011b]. WINGS can validate the workflows that are 
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created by the user by reasoning about the semantic 
constraints that have been defined for the workflow, its 

components,  and  all  the associated  input and  output object  

 
Figure 2.  The student selects the data for the workflow, and can ask WINGS to suggest values for the parameters. 

 

 



Figure 3.  The student selects the workflow on the left and 3 datasets, and can ask WINGS to generate the workflow on the right which will process the 3 
datasets in parallel. 

variables.  WINGS can also elaborate workflows by adding 
details about additional parameters as well as constraints for 
the object variables.  A high-level introduction to WINGS 
can be found in [Gil et al 2011a], a formal description of the 
workflow representation language and reasoning algorithms 
is given in [Gil et al 2011b]. 

WINGS is released as open source software, and uses 
open standards. In particular, Wings uses the W3C RDF 
standard [Brickley and Guha 2004] to represent semantic 
constraints, and uses other W3C semantic web standards 
such as SPARQL for queries and PROV for provenance [Gil 
and Miles 2013]. 

V. SEMANTIC WORKFLOWS FOR STUDENT PRACTICE 
Figure 2 illustrates how WINGS helps students to run 

valid workflows that exemplify complex data analyses.  In 
this case, the workflow classifies text into categories, and has 
two parameters to be set.  The user can ask WINGS to 
suggest values for those parameters, which WINGS will do 
based on the data selected by the user. 

Figure 3 shows how WINGS helps users understand 
parallel programming concepts.  Given the workflow 
template on the left, which indicates parallel processing 
through stacked boxes, WINGS can expand it to generate an 
executable workflow.  Once the user selects input datasets, in 
this case 3 different ones, WINGS generates the workflow 
on the right, which shows how may processes will be run for 
the data selected.   

WINGS also enables the students to see the intermediate 
and final results of the workflow execution.  This helps them 
understand what is happening in each of the branches of the 
computation, and how the results are put together to generate 
a single output of the workflow. 

As a pre-test, we used workflows to teach core concepts 
of parallel programming to two students.  Neither one had 
programming knowledge.   Both understood the concepts, 
and found the materials accessible.  Both found the concepts 
taught to be potentially useful.  More thorough tests will be 
required in order to ensure reasonable confidence that the 
material is accessible. 

VI. CONCLUSIONS 
We have proposed a course for non-programmers to learn 

about data science, and in particular concepts of parallel and 
distributed computing.  The course allows the students to 
practice by using semantic workflows.  The workflows 
capture complex multi-step data analysis methods, which 
include semantic constraints about their use.  This enables 
the workflow system to validate the workflows and assist the 
students to set up the analysis properly. 
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